The formula of the length of the segment AB: [tex]A(x_A;\ y_A);\ B(x_B;\ y_B)\\\\|AB|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}[/tex] We have: [tex]A(3;\ 2)\to x_A=3;\ y_A=2\\\\B(-3;\ -6)\to x_B=-3;\ y_B=-6[/tex] Substitute: [tex]|AB|=\sqrt{(-3-3)^2+(-6-2)^2}=\sqrt{(-6)^2+(-8)^2}\\\\=\sqrt{36+64}=\sqrt{100}=10[/tex] Answer: B) 10.