Respuesta :
a) The vertical component of velocity v is taking the rock to a height
Vertical component = [tex]vsin\theta[/tex]
The time taken to reach maximum height = [tex]\frac{vsin\theta}{g}[/tex]
So total time of rocks flight = [tex]\frac{2vsin\theta}{g}[/tex]
Range of rock is due to the horizontal component of velocity = [tex]vcos\theta[/tex]
Range = [tex]\frac{2*v*sin\theta*v*cos\theta}{g}[/tex] = [tex]\frac{2*v^2*sin\theta*cos\theta}{g}[/tex]
Maximum height = [tex]\frac{g*t^2}{2}[/tex] = [tex]\frac{v^2*sin^2\theta}{2*g}[/tex]
Since range = maximum height
We have [tex]\frac{2*v^2sin\theta*cos\theta}{g} = \frac{v^2*sin^2\theta}{2*g}[/tex]
[tex]tan\theta = 4[/tex]
[tex]\theta = 75.96^0[/tex]
So when angle of projection is [tex]\theta = 75.96^0[/tex] range is equal to maximum height reached.
b) We have range = [tex]\frac{2*v^2*sin\theta*cos\theta}{g}[/tex] =[tex]\frac{2*v^2*sin2\theta}{g}[/tex]
Maximum of range is reached when [tex]\theta = 45^0[/tex]
Maximum range = [tex]\frac{2*v^2}{g}[/tex]
c) For range to be equal to maximum height only condition is [tex]tan\theta = 4[/tex], it does not depend upon acceleration due to gravity and velocity. That angle is a constant.
Vertical component = [tex]vsin\theta[/tex]
The time taken to reach maximum height = [tex]\frac{vsin\theta}{g}[/tex]
So total time of rocks flight = [tex]\frac{2vsin\theta}{g}[/tex]
Range of rock is due to the horizontal component of velocity = [tex]vcos\theta[/tex]
Range = [tex]\frac{2*v*sin\theta*v*cos\theta}{g}[/tex] = [tex]\frac{2*v^2*sin\theta*cos\theta}{g}[/tex]
Maximum height = [tex]\frac{g*t^2}{2}[/tex] = [tex]\frac{v^2*sin^2\theta}{2*g}[/tex]
Since range = maximum height
We have [tex]\frac{2*v^2sin\theta*cos\theta}{g} = \frac{v^2*sin^2\theta}{2*g}[/tex]
[tex]tan\theta = 4[/tex]
[tex]\theta = 75.96^0[/tex]
So when angle of projection is [tex]\theta = 75.96^0[/tex] range is equal to maximum height reached.
b) We have range = [tex]\frac{2*v^2*sin\theta*cos\theta}{g}[/tex] =[tex]\frac{2*v^2*sin2\theta}{g}[/tex]
Maximum of range is reached when [tex]\theta = 45^0[/tex]
Maximum range = [tex]\frac{2*v^2}{g}[/tex]
c) For range to be equal to maximum height only condition is [tex]tan\theta = 4[/tex], it does not depend upon acceleration due to gravity and velocity. That angle is a constant.