If [tex]h(x) = (f[/tex]°[tex]g)(x)[/tex] and [tex]h(x) \sqrt[3]{x+3}[/tex], find [tex]g(x)[/tex] if [tex]f(x) \sqrt[3]{x+2}[/tex]

Respuesta :

Answer:

g(x) = x + 1

Step-by-step explanation:

h(x)=(f o g)(x)

h(x)=f(g(x)) (Equation 1)

[tex]h(x)=\sqrt[3]{x+3}[/tex]

[tex]f(x)=\sqrt[3]{x+2}[/tex]

[tex]f(g(x))=\sqrt[3]{g(x)+2}[/tex]

Replacing in the Equation 1:

[tex]\sqrt[3]{x+3}=\sqrt[3]{g(x)+2}[/tex]

Solving for g(x): Raising both sides to the power 3:

[tex](\sqrt[3]{x+3})^{3}=(\sqrt[3]{g(x)+2})^{3}[/tex]

x+3=g(x)+2

Subtracting 2 from both sides of the equation:

x+3-2=g(x)+2-2

x+1=g(x)

g(x)=x+1