Answer:
After 2.9 years the town's tax status will change
The towns tax status change within the next 3 years
Step-by-step explanation:
The question below is
Will the towns tax status change within the next 3 years ?
Let
y -----> the population of a small town
t ----> the number of years
we have a exponential function of the form
[tex]y=a(b)^{t}[/tex]
where
a is the initial value
b is the base
In this problem
[tex]a=9,400\ people[/tex]
[tex]b=100\%-14.3\%=85.7\%=85.7/100=0.857[/tex]
substitute
[tex]y=9,400(0.857)^{t}[/tex]
Remember that
The town's tax status will change once the population is below 6,000 people
so
The inequality that represent this situation is
[tex]9,400(0.857)^{t}< 6,000[/tex]
Solve for t
[tex](0.857)^{t}< 6,000/9,400[/tex]
Apply log both sides
[tex](t)log(0.857)< log(6,000/9,400)[/tex]
[tex]-0.067t< -0.1950[/tex]
Multiply by -1 both sides
[tex]0.067t > 0.1950[/tex]
[tex]t > 2.9\ years[/tex]
so
After 2.9 years the town's tax status will change
therefore
The answer is
Yes, the towns tax status change within the next 3 years