Respuesta :

ANSWER

[tex]^8P_4=1680[/tex]

EXPLANATION

The given permutation is

[tex]^8P_4.[/tex]

Recall the formula for permutation

[tex]^nP_r=\frac{n!}{(n-r)!}[/tex]

We substitute n=8, and r=4 to obtain:

[tex]^8P_4=\frac{8!}{(8-4)!}[/tex]

[tex]^8P_4=\frac{8!}{4!}[/tex]

Recall the factorial expansion

[tex]n! = n \times (n - 1) \times (n - 2)...3 \times 2 \times 1[/tex]

We apply this expansion to get:

[tex]^8P_4=\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!}[/tex]

[tex]^8P_4=8 \times 7 \times 6 \times 5[/tex]

[tex]^8P_4=1680[/tex]