A large cruise ship of mass 6.40 ✕ 107 kg has a speed of 11.6 m/s at some instant. (a) What is the ship's kinetic energy at this time? J (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) J (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.20 km? N

Respuesta :

(a) [tex]4.3\cdot 10^9 J[/tex]

The kinetic energy of an object is given by:

[tex]K=\frac{1}{2}mv^2[/tex]

where

m is the mass of the object

v is its speed

For the ship in the problem, we have

[tex]m=6.40\cdot 10^7 kg[/tex] is the mass

[tex]v=11.6 m/s[/tex] is the speed

So its kinetic energy is

[tex]K=\frac{1}{2}(6.40\cdot 10^7 kg)(11.6 m/s)^2=4.3\cdot 10^9 J[/tex]

(b) [tex]-4.3\cdot 10^9 J[/tex]

According to the work-kinetic energy theorem, the work done on an object is equal to the change in kinetic energy of the object:

[tex]W= \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2[/tex]

where

W is the work done

m is the mass of the object

v is the final speed of the object

u is the initial speed of the object

Here we want to find the work done to stop the ship, so the final speed of the ship is v=0, while the initial speed is u=11.6 m/s. So the work done will be

[tex]W= 0 -\frac{1}{2}(6.40\cdot 10^7 kg)(11.6 m/s)^2=-4.3\cdot 10^9 J[/tex]

(c) [tex]1.3\cdot 10^6 N[/tex]

The work done on an object can be also written as follows

[tex]W=Fd[/tex]

where

F is the magnitude of the force

d is the displacement of the object

Here we know:

[tex]W=-4.3\cdot 10^9 J[/tex] is the work done

d = 3.20 km = 3200 m is the displacement of the ship

So we can solve the formula to find F, the force exerted on the ship to stop it:

[tex]F=\frac{W}{d}=\frac{-4.3\cdot 10^9 J}{3200 m}=-1.3\cdot 10^6 N[/tex]

and the negative sign simply means that the force is opposite to the displacement of the ship (in fact, the force acts against the motion of the ship).