Respuesta :

Answer:

10010

Step-by-step explanation:

[tex]1011=1(2)^3+0(2)^2+1(2)^1+1(2)^0[/tex]

[tex]111=1(2)^2+1(2)^1+1(2)^0[/tex]

So [tex]1011+111[/tex] gives us:

[tex]1(2)^3+0(2)^2+1(2)^1+1(2)^0[/tex]

[tex]+[/tex]

[tex]1(2)^2+1(2)^1+1(2)^0[/tex]

-----------------------------------------------------

Combine like terms:

[tex]1(2)^3+(0+1)(2)^2+(1+1)(2)^1+(1+1)(2)^0[/tex]

[tex]1(2)^3+1(2)^2+(2)(2)^1+(2)(2)^0[/tex]

We aren't allowed to have a coefficient bigger than 1.

I'm going to replace [tex]2^0[/tex] with 1 and [tex]2[/tex] with [tex](2)^1[/tex]:

[tex]1(2)^3+1(2)^2+(2)^2+(2)^1(1)[/tex]

I want a [tex]2^0[/tex] number:

[tex]1(2)^3+1(2)^2+1(2)^2+1(2)^1+0(2)^0[/tex]

Combine like terms:

[tex]1(2)^3+2(2)^2+1(2)^1+0(2)^0[/tex]

[tex]2(2)^2=2^3[/tex]:

[tex]1(2)^3+2^3+1(2)^1+0(2)^0[/tex]

Combine like terms:

[tex]2(2)^3+1(2)^1+0(2)^0[/tex]

We can rewrite the first term by law of exponents:

[tex]2^4+1(2)^1+0(2)^0[/tex]

[tex]1(2)^4+1(2)^1+0(2)^0[/tex]

So the binary form is:

[tex]10010[/tex]

Maybe you like this way more:

Keep in mind 1+1=10 and that 1+1+1=11:

Setup:

      1     0     1      1

+            1      1      1

------------------------------

     (1)    (1)    (1)

      1     0     1      1

+            1      1      1

------------------------------

     1 0    0     1       0

I had to do some carry over with my 1+1=10 and 1+1+1=11.