Suppose a professor counts the final exam as being equal to each of the other tests in her course, and she will also change the lowest test score to match the final exam score if the final exam score is higher. If a student's four test scores are 83, 67, 52, and 90, what is the lowest score the student can earn on the final exam and still obtain at least an 80 average for the course?

Respuesta :

Answer:

  80

Step-by-step explanation:

The three highest exam scores have an average of 80. To maintain an average of 80, the final exam score must be at least 80.

  (83 +67 +90)/3 = 240/3 = 80

_____

Essentially, the final exam score counts as two tests, and the lowest test score is thrown out.

The lowest score the student can obtain is 80

The student would take 5 tests. The total marks obtainable is 500( 100 x 5). The student wants to score at least 80 in the course. So she needs to have at least a total score of 400(80 x 5).

In this calculation 52, which is the lowest score would be excluded. This is because the professor would replace this score with her exam score. The student has the scores for 3 tests already.

Total scores of the student for the 3 tests = 83 + 67 + 90 = 240

Sum of scores on the remaining two tests = 400 - 240 = 160

Average score on the remaining two tests = 160/ 2 =  80

To learn more about determining average scores, please check: https://brainly.com/question/9849434?referrer=searchResults