Answer:
The total area of the living room is [tex]600\ ft^2[/tex]
Step-by-step explanation:
we know that
The total area of the living room on the coordinate plane is equal to the area of a triangle EHO plus the area of rectangle EOUS
so
[tex]A=\frac{1}{2}(b)( h)+LW[/tex]
we have
[tex]b=EO=6\ units[/tex] ---> base of triangle
[tex]h=2\ units[/tex] ---> height of triangle
[tex]L=EO=6\ units[/tex] ---> length of rectangle
[tex]W=OU=3\ units[/tex] --->width of rectangle
substitute the values
[tex]A=\frac{1}{2}(6)(2)+(6)(3)[/tex]
[tex]A=6+18=24\ units^2[/tex]
Remember that
Each unit on the coordinate plane represents 5 feet
so
[tex]1\ unit^2=25\ ft^2[/tex]
therefore
The total area of the living room is
[tex]24(25)=600\ ft^2[/tex]