In simplest radical form, what are the solutions to the quadratic equation 0 = –3x2 – 4x + 5? Quadratic formula: x = StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFraction

Respuesta :

The solutions of the quadratic equation 0 = -3x² - 4x + 5 are

[tex]x=\frac{-2-\sqrt{19}}{3}[/tex]  and  [tex]x=\frac{-2+\sqrt{19}}{3}[/tex]

Step-by-step explanation:

The quadratic formula of the quadratic equation ax² + bx + c = 0, is

[tex]x=\frac{-b+-\sqrt{b^{2}-4ac}}{2a}[/tex]

To find the solution of the quadratic equation by using quadratic formula

  • Find the values of a, b, and c from the quadratic equation
  • Substitute these values in the quadratic formula
  • Calculate the values of x

∵ -3x² - 4x + 5 = 0

∴ a = -3 , b = -4 and c = 5

- Substitute these values in the quadratic formula

∵ [tex]x=\frac{-(-4)+\sqrt{(-4)^{2}-4(-3)(5)}}{2(-3)}[/tex]

∴ [tex]x=\frac{4+\sqrt{16+60}}{-6}[/tex]

∴ [tex]x=\frac{4+2\sqrt{19}}{-6}[/tex]

- Simplify by dividing up and down by -2

∴ [tex]x=\frac{-2-\sqrt{19}}{3}[/tex]

∵ [tex]x=\frac{-(-4)-\sqrt{(-4)^{2}-4(-3)(5)}}{2(-3)}[/tex]

∴ [tex]x=\frac{4-\sqrt{16+60}}{-6}[/tex]

∴ [tex]x=\frac{4-2\sqrt{19}}{-6}[/tex]

- Simplify by dividing up and down by -2

∴ [tex]x=\frac{-2+\sqrt{19}}{3}[/tex]

The solutions of the quadratic equation 0 = -3x² - 4x + 5 are

[tex]x=\frac{-2-\sqrt{19}}{3}[/tex]  and [tex]x=\frac{-2+\sqrt{19}}{3}[/tex]

Learn more:

You can learn more about quadratic equation in brainly.com/question/7361044

#LearnwithBrainly

Answer:

It's A on edg