Respuesta :

Answer:

[tex]12\pi (inches)^{2}[/tex]

Step-by-step explanation:

Given:

radius of cone = 3 inch

Total area of cone = [tex]24\pi (inch)^{2}[/tex]

Find the volume of the cone?

We know the area of cone = [tex]\pi r(r+s)[/tex] -------(1)

Where r = radius

Ans s = side of the cone

Put the area value in equation 1

[tex]24\pi=\pi r(r+s)[/tex] -------(1)

[tex]\frac{24\pi }{\pi r} =r+s[/tex]

[tex]\frac{24}{ r}-r =s[/tex]

Put r value in above equation.

[tex]s =\frac{24}{ 3}-3[/tex]

[tex]s=8-3[/tex]

[tex]s=5[/tex]

The side s = 5 inches

We know the side of the cone formula

[tex]s^{2}=r^{2}+ h^{2}[/tex]

[tex]h^{2}=s^{2}- r^{2}[/tex]

Put r and s value in above equation.

[tex]h^{2}=5^{2}- 3^{2}[/tex]

[tex]r^{2} = 25-9[/tex]

[tex]r^{2} = 16[/tex]

[tex]r = 4[/tex]

The volume of cone is

[tex]V = \frac{1}{3} \pi r^{2} h[/tex]

Put r and h value in above equation.

[tex]V = \frac{1}{3} \pi (3)^{2}\times 4[/tex]

[tex]V = 12\pi (inches)^{2}[/tex]

The Volume of the cone is [tex]12\pi (inches)^{2}[/tex]