Which shows the correct substitution of the values a, b, and c from the equation 0 = 4x2 + 2x – 1 into the quadratic formula below?

Quadratic formula: x = StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFraction

x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4(4)(negative 1) EndRoot Over 2(4) EndFraction
x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4(4)(1) EndRoot Over 2(4) EndFraction
x = StartFraction negative 2 plus or minus StartRoot 2 squared + 4(4)(negative 1) EndRoot Over 2(4) EndFraction

Respuesta :

Answer:

x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4(4)(negative 1) EndRoot Over 2(4) EndFraction

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]4x^{2} +2x-1=0[/tex]  

so

[tex]a=4\\b=2\\c=-1[/tex]

substitute in the formula

[tex]x=\frac{-2(+/-)\sqrt{2^{2}-4(4)(-1)}} {2(4)}[/tex]

therefore

x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4(4)(negative 1) EndRoot Over 2(4) EndFraction

Answer:

its B on edg2020

Step-by-step explanation: