Answer:
a) P0 = D1 / (Ke - g)
P0 = Current Price
D1 = Expected Div after 1 Year
Ke = COst of Equity
g = Growth Rate
D1 = D0(1+g)
= $ 3.05 (1+0.055)
= $ 3.05(1.055)
= $ 3.21775
P0 = D1 / (Ke - g)
= $ 3.21775 / (0.10-0.055)
= $ 3.21775 / 0.045
= $ 71.5055
Part B:
P3 = D4 / (Ke - g)
P3 = Price after 3 Years
D4 = Expected Div after 4 Years
Ke = COst of Equity
g = Growth Rate
D4 = D0(1+g)^4
= $ 3.05 (1+0.055)^4
= $ 3.05(1.055)^4
= $3.05 * 1.2388
= $ 3.778
P3 = D4 / (Ke - g)
= $ 3.778 / (0.100-0.055)
= $ 3.778 / 0.045
= $ 83.964
Part c:
P15 = D16 / (Ke - g)
P15 = Price after 15 Years
D16 = Expected Div after 16 Years
Ke = COst of Equity
g = Growth Rate
D16 = D0(1+g)^16
= $ 3.05 (1+0.055)^16
= $ 3.05 * (1.055)^16
= $3.05 * 2.355
= $ 7.183
P15 = D16 / (Ke - g)
= $ 7.183 / (0.100-0.055)
= $ 7.183 / 0.045
= $ 159.6344
Explanation: