Respuesta :

The value of [tex]\tan \left(\frac{5\pi }{4}\right)[/tex] is 1

Explanation:

Given that the expression is [tex]\tan \left(\frac{5\pi }{4}\right)[/tex]

We need to determine the solution of the expression.

Let us rewrite the angles for the expression [tex]\tan \left(\frac{5\pi }{4}\right)[/tex]

Thus, we have,

[tex]\tan \left(\frac{5\pi }{4}\right)=\tan \left(\frac{4+1}{4}\pi \right)[/tex]

Simplifying, we get,

[tex]\tan \left(\frac{5\pi }{4}\right)=\tan \left(\left(\frac{4}{4}+\frac{1}{4}\right)\pi \right)[/tex]

Multiplying by π, we have,

[tex]\tan \left(\frac{5\pi }{4}\right)=\tan \left(\left\pi+\frac{1}{4}\right\pi \right)[/tex]

Since, we know that [tex]\tan \left(x+\pi \cdot \:k\right)=\tan \left(x\right)[/tex]

Applying the above rule, we have,

[tex]\tan \left(\pi +\frac{1}{4}\pi \right)=\tan \left(\frac{1}{4}\pi \right)[/tex]

Hence, simplifying, we have,

[tex]\tan \left(\frac{\pi }{4}\right)[/tex]

The value of [tex]\tan \left(\frac{\pi }{4}\right)[/tex] is 1

Thus, the value of the expression [tex]\tan \left(\frac{5\pi }{4}\right)[/tex] is 1