Consider the two equations below. Explain completely the similarities and

differences in how you would solve each equation. Be clear and complete.

3* = 12 and x3 = 12

Respuesta :

Answer:

Here, the given equations,

[tex]3^x=12[/tex] and [tex]x^3=12[/tex]

Similarity: In both equations there is only one variable ( i.e. x)

Difference: [tex]3^x=12[/tex] is an exponential equation while [tex]x^3=12[/tex] is a polynomial equation.

Now, when we solve an exponential equation we take log in both sides of the equation as follows:

[tex]3^x=12[/tex]

[tex]\log(3^x)=\log12[/tex]

[tex]x\log 3 =\log 12[/tex]       ( ∵ [tex]\log m^n=n\log m[/tex] )

[tex]\implies x =\frac{\log 12}{\log 3}[/tex]

Hence, the solution of the equation [tex]3^x=12[/tex] is [tex]x=\frac{\log 12}{\log 3}[/tex].

While, when we solve a polynomial we find the roots as follows:

[tex]x^3=12[/tex]

[tex]x^3-12=0[/tex]

[tex]x^3-(12^\frac{1}{3})^3=0[/tex]

[tex](x-12^\frac{1}{3})(x^2+12^\frac{1}{3}x+(12^\frac{1}{3})^2)=0[/tex]

By zero product property,

[tex](x-12^\frac{1}{3})=0[/tex] or [tex](x^2+12^\frac{1}{3}x+(12^\frac{1}{3})^2)=0[/tex]

If [tex](x-12^\frac{1}{3})=0[/tex], then [tex]x=12^\frac{1}{3}[/tex]

If [tex]x^2+12^\frac{1}{3}x+(12^\frac{1}{3})^2=0[/tex],

Then, by quadratic formula,

[tex]x=\frac{-12^\frac{1}{3}\pm \sqrt{12^\frac{2}{3}-4(1)(12^\frac{1}{3})^2}}{2}[/tex]

 [tex]=\frac{-12^\frac{1}{3}\pm \sqrt{12^\frac{2}{3}-4(12^\frac{2}{3})}}{2}[/tex]

 [tex]=\frac{-12^\frac{1}{3}\pm i\sqrt{3(12^\frac{2}{3})}}{2}[/tex]

 [tex]=12^\frac{1}{3}(\frac{-1\pm i\sqrt{3}}{2})[/tex]

Hence, the solutions of the equation [tex]x^3=12[/tex] are [tex]12^\frac{1}{3}[/tex],  [tex]12^\frac{1}{3}(\frac{-1+i\sqrt{3}}{2})[/tex]  and  [tex]12^\frac{1}{3}(\frac{-1-i\sqrt{3}}{2})[/tex] .