Factor completely 16x8 − 1.
(4x4 − 1)(4x4 + 1)
(2x2 − 1)(2x2 + 1)(4x4 + 1)
(2x2 − 1)(2x2 + 1)(2x2 + 1)(2x2 + 1)
(2x2 − 1)(2x2 + 1)(4x4 − 1)

Respuesta :

Given:

The given expression is [tex]16 x^{8}-1[/tex]

We need to determine the factor of the given expression.

Factor:

Let us rewrite the given expression.

Thus, we have;

[tex]\left(4 x^{4}\right)^{2}-1^{2}[/tex]

Since, the above expression is of the form [tex]a^2-b^2[/tex], let us apply the identity [tex]a^2-b^2=(a+b)(a-b)[/tex]

Thus, we have;

[tex]\left(4 x^{4}+1\right)\left(4 x^{4}-1\right)[/tex] ------ (1)

Now, we shall factor the term [tex]4x^4-1[/tex]

[tex]4x^4-1=(2x^2)^2-1^2[/tex]

           [tex]=(2x^2+1)(2x^2-1)[/tex]

Substituting the above expression in equation (1), we have;

[tex]\left(4 x^{4}+1\right)\left(2 x^{2}+1\right)(2x^2-1)[/tex]

Therefore, the factor of the given expression is [tex]\left(4 x^{4}+1\right)\left(2 x^{2}+1\right)(2x^2-1)[/tex]

Hence, Option B is the correct answer.

Given:

The given expression is

We need to determine the factor of the given expression.

Factor:

Let us rewrite the given expression.

Thus, we have;

Since, the above expression is of the form , let us apply the identity

Thus, we have;

------ (1)

Now, we shall factor the term

         

Substituting the above expression in equation (1), we have;

Therefore, the factor of the given expression is

Hence, Option B is the correct answer.