Respuesta :

Answer: B) 5

Step-by-step explanation:

The sum of two numbers is 17.

Let x and y be those numbers.

[tex]x+y=17[/tex]

One number is 3 less than [tex]\frac{2}{3}[/tex] of the other number (y).

[tex]x=\frac{2}{3}y-3[/tex]

----------------------------------------------------------------------------

We end up with these two equations.

[tex]x+y=17\\x=\frac{2}{3}y-3[/tex]

Replace x in the first equation to find y.

[tex]x+y=17\\\frac{2}{3}y-3+y=17[/tex]

Add 3.

[tex]\frac{2}{3}y+y=17+3[/tex]

Combine like terms.

[tex]\frac{2+3}{3}y=20\\\frac{5}{3}y=20[/tex]

Multiply by the reciprocal of the fraction next to y.

[tex](\frac{3}{5} )\frac{5}{3}y=20(\frac{3}{5} )[/tex]

[tex]y=12[/tex]

Now replace the value of y in any of the equations to find x.

[tex]x+y=17\\x+12=17\\x=17-12\\x=5[/tex]

Therefore, between 5 and 12, 5 is the lesser number.