Find the perimeter of quadrilateral ABCD. Round to the nearest tenth.

Answer:
Perimeter = 13.5 units
Step-by-step explanation:
Coordinates of A → (1, 2)
Coordinates of B → (2, 5)
Coordinates of C → (5, 7)
Coordinates of D → (4, 4)
Length of AB = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1}})^2}[/tex]
= [tex]\sqrt{(2-1)^2+(5-2)^2}=\sqrt{10}[/tex] units
Length of BC = [tex]\sqrt{(5-2)^2+(7-5)^2}[/tex]
= [tex]\sqrt{13}[/tex] units
Length of CD = [tex]\sqrt{(5-4)^2+(7-4)^2}=\sqrt{10}[/tex] units
Length of AC = [tex]\sqrt{(4-1)^2+(4-2)^2}=\sqrt{13}[/tex] units
Perimeter of the quadrilateral = [tex]2(\sqrt{10}+\sqrt{13})[/tex]
= 2(3.16 + 3.61)
= 13.54
≈ 13.5 units
Perimeter of the quadrilateral ABCD is 13.5 units