Respuesta :

Answer:

Perimeter = 13.5 units

Step-by-step explanation:

Coordinates of A → (1, 2)

Coordinates of B → (2, 5)

Coordinates of C → (5, 7)

Coordinates of D → (4, 4)

Length of AB = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1}})^2}[/tex]

                      = [tex]\sqrt{(2-1)^2+(5-2)^2}=\sqrt{10}[/tex] units

Length of BC = [tex]\sqrt{(5-2)^2+(7-5)^2}[/tex]

                      = [tex]\sqrt{13}[/tex] units

Length of CD = [tex]\sqrt{(5-4)^2+(7-4)^2}=\sqrt{10}[/tex] units

Length of AC = [tex]\sqrt{(4-1)^2+(4-2)^2}=\sqrt{13}[/tex] units

Perimeter of the quadrilateral = [tex]2(\sqrt{10}+\sqrt{13})[/tex]

                                                  = 2(3.16 + 3.61)

                                                  = 13.54

                                                  ≈ 13.5 units

Perimeter of the quadrilateral ABCD is 13.5 units