Respuesta :

Answer: The amount of sample left after 8323 years is 4.32g

Explanation:

Expression for rate law for first order kinetics is given by:

[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]

where,

k = rate constant

t = age of sample

a = let initial amount of the reactant

a - x = amount left after decay process  

a) for completion of half life:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

[tex]t_{\frac{1}{2}}=\frac{0.693}{k}[/tex]

[tex]k=\frac{0.693}{8694years}=7.97\times 10^{-5}years^{-1}[/tex]

b) amount left after 8323 years

[tex]t=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]8323=\frac{2.303}{7.97\times 10^{-5}}\log\frac{8.30g}{a-x}[/tex]

[tex]0.285=\log\frac{8.30}{a-x}[/tex]

[tex]\frac{8.30}{a-x}=1.92[/tex]

[tex](a-x)=4.32g[/tex]

The amount of sample left after 8323 years is 4.32g