Respuesta :

Answer:

4[tex]\sqrt{2}[/tex] cm

Step-by-step explanation:

The diagonal divides the square into 2 right angles with legs s and the diagonal as the hypotenuse.

Using Pythagoras' identity in the right triangle , then

s² + s² = 8²

2s² = 64 ( divide both sides by 2 )

s² = 32 ( take the square root of both sides )

s = [tex]\sqrt{32}[/tex] = 4[tex]\sqrt{2}[/tex]

Answer:

Given :

  • ↠ The diagonal of a square is 8 cm.

To Find :

  • ↠ The length of the side of square.

Using Formula :

Here is the formula to find the side of square if diagonal is given :

[tex]\implies{\sf{a = \sqrt{2} \dfrac{d}{2}}} [/tex]

Where :

  • ➺ a = side of square
  • ➺ d = diagonal of square

Solution :

Substituting the given value in the required formula :

[tex]{\dashrightarrow{\pmb{\sf{ \: a = \sqrt{2} \dfrac{d}{2}}}}}[/tex]

[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times \dfrac{8}{2}}}}[/tex]

[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times \cancel{\dfrac{8}{2}}}}}[/tex]

[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times 4}}}[/tex]

[tex]{\dashrightarrow{\sf{ \: a = 4\sqrt{2}}}}[/tex]

[tex]{\dashrightarrow{\sf{\underline{\underline{\red{ \: a = 5.65 \: cm}}}}}}[/tex]

Hence, the length of the side of square is 5.6 cm.

[tex]\underline{\rule{220pt}{3pt}}[/tex]