Respuesta :
Answer:
4[tex]\sqrt{2}[/tex] cm
Step-by-step explanation:
The diagonal divides the square into 2 right angles with legs s and the diagonal as the hypotenuse.
Using Pythagoras' identity in the right triangle , then
s² + s² = 8²
2s² = 64 ( divide both sides by 2 )
s² = 32 ( take the square root of both sides )
s = [tex]\sqrt{32}[/tex] = 4[tex]\sqrt{2}[/tex]
Answer:
Given :
- ↠ The diagonal of a square is 8 cm.
To Find :
- ↠ The length of the side of square.
Using Formula :
Here is the formula to find the side of square if diagonal is given :
[tex]\implies{\sf{a = \sqrt{2} \dfrac{d}{2}}} [/tex]
Where :
- ➺ a = side of square
- ➺ d = diagonal of square
Solution :
Substituting the given value in the required formula :
[tex]{\dashrightarrow{\pmb{\sf{ \: a = \sqrt{2} \dfrac{d}{2}}}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times \dfrac{8}{2}}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times \cancel{\dfrac{8}{2}}}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = \sqrt{2} \times 4}}}[/tex]
[tex]{\dashrightarrow{\sf{ \: a = 4\sqrt{2}}}}[/tex]
[tex]{\dashrightarrow{\sf{\underline{\underline{\red{ \: a = 5.65 \: cm}}}}}}[/tex]
Hence, the length of the side of square is 5.6 cm.
[tex]\underline{\rule{220pt}{3pt}}[/tex]