What are the solutions of the equation x4 + 6x2 + 5 = 0? Use u substitution to solve.
x = i and x = i5
x=+ i and x
x= +115
O x=V-1 and x = = -5
x=+ -1 and x = = -5​

Respuesta :

Answer:

A; The first choice.

Step-by-step explanation:

We have the equation [tex]x^4+6x^2+5=0[/tex] and we want to solve using u-substitution.

When solving by u-substitution, we essentially want to turn our equation into quadratic form.

So, let [tex]u=x^2[/tex]. We can rewrite our equation as:

[tex](x^2)^2+6(x^2)+5=0[/tex]

Substitute:

[tex]u^2+6u+5=0[/tex]

Solve. We can factor:

[tex](u+5)(u+1)=0[/tex]

Zero Product Property:

[tex]u+5=0\text{ and } u+1=0[/tex]

Solve for each case:

[tex]u=-5\text{ and } u=-1[/tex]

Substitute back u:

[tex]x^2=-5\text{ and } x^2=-1[/tex]

Take the square root of both sides for each case. Since we are taking an even root, we need plus-minus. Thus:

[tex]x=\pm\sqrt{-5}\text{ and } x=\pm\sqrt{-1}[/tex]

Simplify:

[tex]x=\pm i\sqrt{5}\text{ and } x=\pm i[/tex]

Our answer is A.