The tens digit of a two-digit number is three times greater than the ones digit. The difference between twice the original number and half the number obtained after reversing the digits is 108. What is the original number? Show your work.

Respuesta :

Answer:

Now solve these two equations.ull get andwer

Ver imagen sahilsidd

The original number will be "63".

Let,

  • The ten's digit be "x".
  • One's digit be "y".

The equation will be:

→ [tex]x=y+3[/tex]...(equation 1)

Original number will be:

→ [tex]10x+y[/tex]

then,

→ [tex]2 (10x+y)-\frac{(10y+x)}{2} = 108[/tex]

→ [tex]\frac{4(10x+y)}{1} -(10y+x) = 216[/tex]

→ [tex]40x+4y-10y-x = 216[/tex]

→ [tex]39x-6y=216[/tex]...(equation 2)

By using (equation 1) and (equation 2), we get

→ [tex]39(y+3)-6y=216[/tex]

→ [tex]39y+117-6y=216[/tex]

→                   [tex]33y=99[/tex]

→                       [tex]y = \frac{99}{33}[/tex]

→                          [tex]= 3[/tex]

Now,

[tex]x = y+3[/tex]

  [tex]=3+3[/tex]

  [tex]=6[/tex]

 

hence,

The original number will be:

= [tex]10x+y[/tex]

= [tex]10\times 6+3[/tex]

= [tex]60+3[/tex]

= [tex]63[/tex]

Thus the above approach is right.

Learn more:

https://brainly.com/question/285966