Respuesta :
Answer:
The percentage is [tex]k = 12.5 \%[/tex]
Explanation:
From the question we are told that
The axis is is at [tex]\theta = 45 ^o[/tex]
Generally the of intensity light emerging from the first polarizer is mathematically represented as
[tex]I_{1} = \frac{I_o}{ 2}[/tex]
Where [tex]I_o[/tex] is the intensity of unpolarized light
Now the light emerging from the second polarizer is mathematically represented as
[tex]I_2 = I_ 1 * cos ^2(\theta )[/tex]
[tex]I_2 = \frac{I_o}{2} * cos ^2(45 )[/tex]
[tex]I_2 = \frac{I_o}{2} * \frac{1}{2} = \frac{I_o}{4}[/tex]
Now the light emerging from the third polarizer is mathematically represented as
[tex]I_3 = I_ 2 * cos ^2(\theta )[/tex]
[tex]I_3 = \frac{I_o}{4} * cos ^2(45 )[/tex]
[tex]I_3 = \frac{I_o}{8}[/tex]
Now the percentage of the intensity of light that emerged with respect to the intensity of the unpolarized light is
[tex]k = \frac{\frac{I_o}{8} }{I_o } * 100[/tex]
[tex]k = 12.5 \%[/tex]
The percentage of light that gets through the three successive Polaroid filters is; 12.5%
We are given;
Angle of transmission axis; θ = 45°
Formula for intensity of light from first polarizer is;
I₁ = ¹/₂I₀
Formula for intensity of light from second polarizer is;
I₂ = I₁cos²θ
Formula for intensity of light from third polarizer is;
I₃ = I₂cos²(90 - θ)
Combining the 3 equations;
Put ¹/₂I₀ for I₁ in second formula to get;
I₂ = ¹/₂I₀cos²θ
Put ¹/₂I₀cos²θ for I₂ in third formula to get;
I₃ = ¹/₂I₀cos²θ*cos²(90 - θ)
Plugging in 45° for θ gives;
I₃ = ¹/₂I₀cos²45*cos²(90 - 45)
⇒ I₃ = ¹/₂I₀cos²45*cos²45
⇒ I₃ = ¹/₂I₀cos⁴45
Now, cos 45 in surd form is 1/√2. Thus;
I₃ = ¹/₂I₀(1/√2)⁴
I₃ = ¹/₂I₀(¹/₄)
I₃ = ¹/₈I₀
I₃/I₀ = ¹/₈
I₃/I₀ = 0.125
In percentage form, we have;
I₃/I₀ = 12.5%
Read more about unpolarized light at; https://brainly.com/question/1444040