Answer:
0.7967
Step-by-step explanation:
We know that population proportion p=0.31.
We have to find P(phat<0.33).
Mean=p=0.31
[tex]Standard deviation=\sqrt{\frac{p(1-p)}{n} }[/tex]
[tex]Standard deviation=\sqrt{\frac{0.31(0.69)}{373} }[/tex]
standard deviation=0.024 (rounded to three decimal places)
[tex]P(phat<0.33)=P(Z<\frac{0.33-0.31}{0.024})[/tex]
[tex]P(phat<0.33)=P(Z<\frac{0.02}{0.024})[/tex]
[tex]P(phat<0.33)=P(Z<0.83)[/tex]
[tex]P(phat<0.33)=0.5+0.2967[/tex]
[tex]P(phat<0.33)=0.7967[/tex]
Thus, the required probability that sample proportion of households spending more than $125 a week is less than 0.33 is 79.67%