How do you expand n! and (n+1)!
For example, how would I simplify lim[tex]\lim_{n \to \infty} n!/(n+1)![/tex]

Respuesta :

Step-by-step explanation:

n! = n × n−2 × n−3 × ... × 2 × 1

(n+1)! = n+1 × n × n−2 × n−3 × ... × 2 × 1

(n+1)! = (n+1) n!

Therefore:

lim(n→∞) (n! / (n+1)!)

lim(n→∞) (n! / ((n+1) n!))

lim(n→∞) (1 / (n+1))

0

Answer:

n! = n × n−2 × n−3 × ... × 2 × 1

(n+1)! = n+1 × n × n−2 × n−3 × ... × 2 × 1

(n+1)! = (n+1) n!

Step-by-step explanation: