Respuesta :

Answer:

Recursive formula is: [tex]a_1=-1 ; \ \ a_n=a_{n-1}+7[/tex]

Explicit formula is: [tex]a_n=7n-8[/tex]

Step-by-step explanation:

We need to find recursive formula and explicit formula for arithmetic sequence -1,6,13,20,27

In the given sequence First term a₁= -1

Common difference d = 7

Finding Recursive Formula

The recursive formula is of type:[tex]a_1= First \ term[/tex] and [tex]a_n=a_{n-1}+d[/tex]

Since the First term a₁ is -1 and common difference d is 7 so, the recursive formula  for given arithmetic sequence will be:

[tex]a_1=-1 ; \ \ a_n=a_{n-1}+7[/tex]

Finding Explicit Formula

The explicit formula is of type: [tex]a_n=a_1+(n-1)d[/tex]

We have

First term a₁= -1

Common difference d = 7

So, explicit formula will be:

[tex]a_n=-1+(n-1)7\\a_n=-1+7n-7\\a_n=7n-8[/tex]

So, explicit formula is: [tex]a_n=7n-8[/tex]