Answer:
m<1
Step-by-step explanation:
If the expression is in the form of [tex]ax^2+bx+c[/tex], then the condition for having 2 different real roots is
[tex]b^2-4ac>0\cdots(i)[/tex].
The given expression is [tex]x^2-2x+m[/tex].
Here, a=1, b=-2 and c=m.
So, by using equation (i),
[tex](-2)^2-4(1)(m)>0[/tex]
[tex]\Rightarrow 4-4m>0[/tex]
[tex]\Rightarrow 4m<4[/tex]
[tex]\Rightarrow m<4/4[/tex]
[tex]\Rightarrow m<1[/tex].
Hence, the condition for the expression [tex]x^2-2x+m[/tex] to have two different real roots is m<1.