Which of these expressions is the simplified form of the expression (Sin(x)/1-cos^2(x)) tan(x/2)?
Edge 2020

Respuesta :

Answer:C

1/1+cos(x)

Step-by-step explanation:

Simplifird form of the given trigonometric expression will be,

         [sinx / (1 - cos²x)] × tan(x/2) = 1 /(1 + cosx)

Simplification of a trigonometric expression:

Given expression in the question,

[tex]\frac{\text{sinx}}{1-\text{cos}^2x}\times \text{tan}(\frac{x}{2})[/tex]

= [tex]\frac{\text{sinx}}{\text{sin}^2x}\times \text{tan}(\frac{x}{2} )[/tex]

= [tex]\frac{1}{\text{sin}x}\times \frac{\text{sin}(\frac{x}{2})}{\text{cos}(\frac{x}{2} )}[/tex]

= [tex]\frac{1}{\text{2sin}\frac{x}{2}\text{cos}(\frac{x}{2} ) }\times \frac{\text{sin}(\frac{x}{2})}{\text{cos}(\frac{x}{2} )}[/tex]

= [tex]\frac{1}{\text{2cos}^2{\frac{x}{2} }}[/tex]

Use the identity → ([tex]2\text{cos}^2x=1+\text{cosx}[/tex])

= [tex]\frac{1}{1+\text{cos}x}[/tex]        

          Hence, [tex]\frac{\text{sinx}}{1-\text{cos}^2x}\times \text{tan}(\frac{x}{2})=\frac{1}{1+\text{cosx}}[/tex] will be the answer.

Learn more to simplify the trigonometric expressions here,

https://brainly.com/question/17043514?referrer=searchResults