audreyc12
contestada

Find a tangent vector of unit length at the point with the given value of the parameter t. r(t) = (7 + t^2)i + t^2j t = 1

Respuesta :

First find the derivative at the given point and later divide by the magnitude of this derivative.

Derivative: r' (t) = 2t i+ 2j t

Magnitude:

[tex] \sqrt{ (2t)^{2} + (2t)^{2} } = \sqrt{8t^2} =2 \sqrt{2} t[/tex]

Now use the value  t =1

Derivative: 2(1)i + 2(1)j = 2i + 2j
Magnitude: 2√2

Unit vector: [2i + 2j] /[2√2] = (√2)/2 i + (√2)/2 j