Answer:
v = 10.85 m/s
Explanation:
We will apply the law of conservation of energy to the skateboarder. Neglecting the frictional effects, the law of conservation of energy can be written as:
[tex]Loss\ in\ Potential\ Energy\ of\ Skateboarder = Gain\ in\ Kinetic\ Energy\ of\ Skateboarder[/tex][tex]mg\Delta h = \frac{1}{2}mv^2\\\\v^2 = 2g\Delta h\\v = \sqrt{2g\Delta h} \\[/tex]
where,
v = velocity of skateboarder = ?
g = acceleration due to gravity = 9.81 m/s²
Δh = change in height = 10 m - 4 m = 6 m
Therefore,
[tex]v = \sqrt{{(2)(9.81\ m/s^2})({6\ m})}}[/tex]
v = 10.85 m/s