Respuesta :

Answer:

The value of x = 1

Step-by-step explanation:

Given

  • hypotenuse = √2
  • angle Ф = 45°

To determine

x = ?

Using the trigonometric ratio

cos Ф = adjacent / hypotenuse

here

Ф = 45°

adjacent of 45° = x

hypotenuse = √2

so substituting Ф = 45°  adjacent = x and hypotenuse = √2  in the equation

cos Ф = adjacent / hypotenuse

[tex]\cos \left(45^{\circ \:}\right)=\frac{x}{\sqrt{2}}[/tex]

switch sides

[tex]\frac{x}{\sqrt{2}}=\cos \left(45^{\circ \:}\right)[/tex]

Multiply both sides by 2

[tex]\frac{2x}{\sqrt{2}}=2\cos \left(45^{\circ \:}\right)[/tex]

[tex]\sqrt{2}x=\sqrt{2}[/tex]             ∵  [tex]\cos \left(45^{\circ \:}\right)=\frac{\sqrt{2}}{2}[/tex]

Divide both sides by √2

[tex]\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2}}[/tex]

[tex]x=1[/tex]

Therefore, the value of x = 1