What is the force of gravity between Earth and the largest dam in the world. Use your equation for universal gravity for the constants.

Mass of the dam. = 3.4x1010kg

Mass of Earth. = 5.98x1024kg

Radius of Earth. = 6.38x106m

9.8

3.33x10-11 N

3.33x1011N

9.8N

Respuesta :

Answer:

[tex]\huge\boxed{\sf F = 3.33* 10 ^{11} \ N}[/tex]

Explanation:

Given Data:

[tex]\sf Mass \ of \ the \ dam =m= 3.4 * 10^{10} kg\\\\Mass \ of \ Earth = M_{e} = 5.98 * 10^{24} kg\\\\Radius \ of \ Earth = r_{e} = 6.38*10^6 m\\\\Gravitational \ Constant = G = 6.67 * 10 ^{-11} Nm^2 / kg^2[/tex]

Required:

Force of gravity = F =?

Formula:

[tex]\sf F = G\frac{mM_{e}}{r^2}[/tex]

Solution:

[tex]\sf F = (6.67*10^{-11})\frac{(3.4*10^{10}* 5.98 * 10^{24})}{(6.38*10^6)^2} \\\\F = \frac{135.6* 10 ^{-11+10+24}}{40.7 * 10 ^{12}} \\\\F = \frac{135.6 * 10^{23}}{40.7*10^{12}} \\\\F = 3.33 * 10 ^{23-12}\\\\F = 3.33* 10 ^{11} \ N\\\\\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807