Respuesta :

Given:

The vertex form of a quadratic equation is

[tex]y=-5(x+2)^2-10[/tex]

To find:

The standard form of the given quadratic equation.

Solution:

We have,

[tex]y=-5(x+2)^2-10[/tex]

Using the formula [tex](a+b)^2=a^2+2ab+b^2[/tex], we get

[tex]y=-5(x^2+2(x)(2)+(2)^2)-10[/tex]

[tex]y=-5(x^2+4x+4)-10[/tex]

Using distributive property, we get

[tex]y=-5x^2-20x-20-10[/tex]

[tex]y=-5x^2-20x-30[/tex]

Therefore, the standard form of the given equation is [tex]y=-5x^2-20x-30[/tex].