write the equation of the line in fully simplified slope-intercept form.

Answer:
[tex]y = -\frac{1}{5}x -1[/tex]
Step-by-step explanation:
Given
The attached graph
Required
Determine the line equation
First, list out two points from the graph
[tex](x_1,y_1) = (-5,0)[/tex]
[tex](x_2,y_2) = (0,-1)[/tex]
Next, calculate the slope (m)
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m = \frac{-1-0}{0 -(-5)}[/tex]
[tex]m = \frac{-1}{0 +5}[/tex]
[tex]m = -\frac{1}{5}[/tex]
The equation in slope intercept form is:
[tex]y = m(x - x_1) + y_1[/tex]
This gives:
[tex]y = -\frac{1}{5}(x - (-5)) + 0[/tex]
[tex]y = -\frac{1}{5}(x +5)[/tex]
Open bracket
[tex]y = -\frac{1}{5}x -1[/tex]