Respuesta :

The answer to this problem is 2√26

15^2-11^2 = 104
sq root 104
Nayefx

Answer:

[tex] \huge\boxed{ \boxed{ \sf{2 \sqrt{26} }}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • Pythagoras theorem
  • PEMDAS

tips and formulas:

  • [tex]\sf Pythagoras\: theorem:\\ \sf a²+b²=c²[/tex]

given:

  • a=11 in
  • c=15 in

let's solve:

[tex] \sf step - 1 : make \: b \: the \: subject \: of \: the \: equation[/tex]

  1. [tex] \sf \: shift \: {a}^{2} \: to \: the\: left \: hand \: side \: and \: change \: its \: sign : \\ \tt {b}^{2} = {c}^{2} - {a}^{2} [/tex]
  2. [tex] \sf squre \: root \: both \: sides : \\ \tt\sqrt{ {b}^{2} } = \sqrt{ {c}^{2} - {a}^{2} } \\ \tt \: b = \sqrt{ {c}^{2} - {a}^{2} } [/tex]

[tex] \sf step - 2 : sustitute \:the \: value \: of \: c \: and \: a \: then \: simplify[/tex]

  1. [tex] \sf substitute \: the \: given \: value \: of \: c \: and \: b : \\ \tt b = \sqrt{ {15}^{2} - {11}^{2} } [/tex]
  2. [tex] \sf simplify \: squres : \\ \tt b = \sqrt{225 - 121} [/tex]
  3. [tex] \sf substract : \\ \tt b = \sqrt{104} [/tex]
  4. [tex] \sf simplify \: redica l : \\ \tt b = \sqrt{ {2}^{2} \times 26 } \\ \tt \therefore b = 2 \sqrt{26} [/tex]