In ΔABC, the measure of ∠C=90°, the measure of ∠A=39°, and BC = 9.7 feet. Find the length of AB to the nearest tenth of a foot. (please answer correctly I will give brainliest)

Respuesta :

Answer:

15.4 ft

Step-by-step explanation:

\sin A = \frac{\text{opposite}}{\text{hypotenuse}}=\frac{9.7}{x}

sinA=

hypotenuse

opposite

=

x

9.7

\sin 39=\frac{9.7}{x}

sin39=

x

9.7

x\sin 39=9.7

xsin39=9.7

Cross multiply.

\frac{x\sin 39}{\sin 39}=\frac{9.7}{\sin 39}

sin39

xsin39

=

sin39

9.7

Divide each side by sin 39.

x=\frac{9.7}{\sin 39}=15.4135\approx 15.4\text{ feet}

x=

sin39

9.7

=15.4135≈15.4 feet

Type into calculator and round to the nearest tenth of a foot.