Respuesta :

Answer:

First, remember that:

[tex]tan(x) = \frac{sin(x)}{cos(x)}[/tex]

and:

[tex]sec(x) = \frac{1}{cos(x)}[/tex]

Then we can rewrite the expression:

[tex]tan(x)*sin(x) + sec(x)*cos^2(x) = A[/tex]

Where A is an equivalent expression.

as:

[tex]\frac{sin(x)}{cos(x)} *sin(x) + \frac{1}{cos(x)}*cos^2(x) = A[/tex]

Then this is:

[tex]\frac{sin^2(x)}{cos(x)} + cos(x) = A[/tex]

Now we can multiply both sides by cos(x), then:

[tex](\frac{sin^2(x)}{cos(x)} + cos(x))*cos(x) = A*cos(x)[/tex]

[tex]sin^2(x) + cos^2(x) = A*cos(x)[/tex]

And we know that the left term of the above equation is equal to 1, then:

[tex]1 = A*cos(x)[/tex]

[tex]\frac{1}{cos(x)} = sec(x) = A[/tex]

And A is equivalent to the original expression, then we get:

[tex]tan(x)*sin(x) + sec(x)*cos^2(x) = sec(x)[/tex]

The simplification of the expression is sec(x)