A cone has a radius of 5.1 inches and a height of 5 inches.


What is the volume of the cone?


Use 3.14 for pi. Round to the nearest tenth.



25.0 in³


75.0 in³


125.4 in³


136.1 in³

Respuesta :

The volume of the given cone is; Option D: 136.1 in³

We are given;

Radius of cone; r = 5.1 inches

Height of cone; h = 5 inches

π = 3.14

Formula for volume of cone is;

V = ¹/₃πr²h

Plugging in the relevant values gives;

V = ¹/₃ * 3.14 * 5.1² * 5

V = 136.119 in³

Approximating to the nearest tenth gives;

V = 136.1 in³

Read more about volume of a cone at; https://brainly.com/question/11576719

Answer:

The correct answer is obtion b) 136.1 in³.

Step-by-step explanation:

Given :

  • »» Radius of cone = 5.1 in
  • »» Height of cone = 5 in

To Find :

  • »» Volume of cone

Using Formula :

[tex]{\star{\small{\underline{\boxed{\sf{\red{Volume_{(Cone)} = \dfrac{1}{3}\pi {r}^{2}h}}}}}}}[/tex]

  • ✧ π = 3.14
  • ✧ r = radius
  • ✧ h = height

Solution :

Substituting all the given values in the formula to find volume of cone :

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1}{3}\pi {r}^{2}h}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times (5.1)^{2} \times 5}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times (5.1 \times 5.1)\times 5}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times (26.01)\times 5}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 26.01\times 5}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1}{3} \times \dfrac{314}{100} \times \dfrac{2601}{100} \times 5}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{1 \times 314 \times 2601 \times 5}{100 \times 100 \times 3}}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{ 314 \times 13005}{100 \times 300}}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} = \dfrac{4083570}{30000}}}}}}[/tex]

[tex]{\longrightarrow{\small{\sf{\purple{Volume_{(Cone)} \approx 136.1 \: {in}^{3}}}}}}[/tex]

[tex]\star{\small{\underline{ \boxed{\frak{\pink{Volume_{(Cone)} \approx 136.1 \: {in}^{3}}}}}}}[/tex]

Hence, the volume of cone is 136.1 in³.

[tex]\rule{300}{1.5}[/tex]