Respuesta :

oldenh

Answer:

Step-by-step explanation:

Suppose that f(2) = −4, g(2) = 3, f '(2) = −5, and g'(2) = 1.

Find h'(2).

(a)    h(x) = 4f(x) − 5g(x)

Use the constant multiple and difference rules:

h'(x) = 4f '(x) − 5g'(x)

h'(2) = 4*f'(2) − 5*g'(2), now substitute values and solve

h'(2) = 4*(−5) − 5*1 = −20 − 5 = −25