Answer: (0.00027144, 0.00036176)
Step-by-step explanation:
The sample proportion of cell phone users who develop cancer of the brain or nervous system = [tex]\dfrac{133}{420027}=0.0003166[/tex]
Sample size : 420027
Confidence interval for p: [tex]\hat{p}\pm z^*\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex], where [tex]\hat{p}[/tex]= sample proportion , n= sample size , z* = crirical z value.
For 90% confidence interval , z*= 1.645
Required confidence interval:
[tex]0.0003166\pm (1.645)\sqrt{\dfrac{0.0003166(1-0.0003166)}{420027}}\\\\=0.0003166\pm 0.00004516\\\\=(0.0003166-0.00004516,\ 0.0003166+ 0.00004516)\\\\=(0.00027144, \ 0.00036176)[/tex]
A 90% confidence interval estimate of the percentage of cell phone users who develop cancer of the brain or nervous system = (0.00027144, 0.00036176)