In the coordinate plane, point C lies on segment AB. If the ratio of the length of segment AC to the length of segment CB is 3:1, find the x-coordinate of C given the coordinates of A(3, 12) and B (14, 17).


Question 14 options:


A. 11.25



B. 6



C. 5.75



D. 12

Respuesta :

Answer:

A. 11.25

Step-by-step explanation:

If point C(x, y) divides line segment AB with end points at A([tex]x_1,y_1[/tex]) and B([tex]x_2,y_2\\[/tex]) in the ratio on n:m, then the coordinates of point C is:

[tex]x=\frac{n}{n+m}(x_2-x_1)+x_1 \\\\y=\frac{n}{n+m}(y_2-y_1)+y_1[/tex]

Given that segment AB is divided by point C in the ratio of 3:1. Given A(3, 12) and B (14, 17). Let coordinate of C be (x, y), hence:

[tex]x=\frac{n}{n+m}(x_2-x_1)+x_1\\\\x=\frac{3}{3+1}(14-3)+3=\frac{3}{4}(11)+3=11.25 \\\\\\y=\frac{n}{n+m}(y_2-y_1)+y_1\\\\y=\frac{3}{3+1}(17-12)+12=\frac{3}{4}(5)+12=15.75[/tex]

Therefore, the coordinate of point C = (11.25, 15.75)

The x coordinate of point C is 11.25