Answer:
[tex]x=0.0498[/tex]
[tex]x'=0.659[/tex]
Explanation:
Specific Volume [tex]V=0.2m_3/kg[/tex]
Absolute Pressure (a) [tex]P_a= 40kpa[/tex]
Giving
[tex]T_a=75.87[/tex]
[tex]v_f=1.265*10^{-3}m^3/kg[/tex]
[tex]v_g=3.993m^3/kg[/tex]
(b) [tex]P_a= 630kpa[/tex]
Giving
[tex]T_b=160.13C[/tex]
[tex]v_f'=1.10282*10^{-3} m^3/kg[/tex]
[tex]v_g'=0.30286 m^3/kg[/tex]
(a)
Generally the equation for quality of Steam X is mathematically given by
[tex]x=\frac{v-v_f}{v_g-v_f}[/tex]
[tex]x=\frac{0.2-1.0265*10^{-3}}{3.993-1.0265*10^{-3}}[/tex]
[tex]x=0.0498[/tex]
(b)
Generally the equation for quality of Steam X is mathematically given by
[tex]x'=\frac{v-v_f'}{v_g'-v_f'}[/tex]
[tex]x'=\frac{0.2-1.10*10^{-3}}{3.30-1.1*10^{-3}}[/tex]
[tex]x'=0.659[/tex]