Given csc(A) = 65/16 and that angle A is in Quadrant I, find the exact value of sec A in simplest radical form using a rational denominator . Someone please help me!

Respuesta :

Answer:

[tex]secA = \frac{65}{63}[/tex]

Step-by-step explanation:

[tex]cosec A = \frac{65}{16}\\\\sin A = \frac{1}{cosecA} = \frac{16}{65}\\\\cos^2 A = 1 - sin^2 A[/tex]

        [tex]= 1 - (\frac{16}{65})^2\\\\=\frac{4225-256}{4225}\\\\=\frac{3969}{4225}\\[/tex]

[tex]cos A = \sqrt{\frac{3696}{4225}} = \frac{63}{65}[/tex]

[tex]secA = \frac{1}{cosA} = \frac{65}{63}[/tex]