Diagonals of Parallelograms
Find the length of VZ

Answer:
YV = VW
[tex]2x + 10 = 3x \\ 3x - 2x = 10 \\ { \underline{ \: \: x = 10 \: \: }}[/tex]
[tex]VZ = 5x - 8 \\ VZ = 5(10) - 8 \\ VZ = 50 - 8 \\ \\ { \underline{ \underline{ \: \: VZ = 42 \: \: }}}[/tex]
Answer:
VZ = XV = 5(10) -8 = 50-8 = 42
VZ = 42
2x+ 10 = 5x-6
2x-5x + 10 = 5x-5x -6
-3x + 10 = -6
-3x + 10 + 6 = -6 +6
-3x + 16 = 0
x = 16/3
x = 5 1/3
5x -6 = 5 (5 1/3) -6
5x - 6 = 26 2/3 - 6
5x - 6 = 20 1/3
2x+10 = 3x
2x-3x +10 = 3x-3x
-x + 10 = 0
x = 10/1
x = 10
5x -1 = 5(10 ) - 8
5x -1 = 50 -8
5x-1 = 42 is true