Respuesta :
Answer:
- 8.78 cm
Solution:
We are given that :
- A semicircle is drawn onto the shorter side of rectangle.
- Shorter side of rectangle measures 4cm. i.e; the diameter of the circle is 4cm
- Area of the figure is 41.4 cm²
Using Formulas:
Area of rectangle:
[tex] \quad\hookrightarrow\quad{\pmb{ \mathfrak {length\times breadth }}}[/tex]
Area of semicircle:
[tex] \quad\hookrightarrow\quad{\pmb{ \mathfrak{ \dfrac{\pi r^2 }{2}}}}[/tex]
- We have to find the length of longer side of rectangle!
Here, we can know that the figure is composed of one rectangle and one semicircle. Therefore by combining the areas of rectangle and circle and taking the length of rectangle as a variable , we will finds its value ;
[tex] \quad\dashrightarrow\quad \sf {Area_{\tiny { total}} = Area_{\tiny {rectangle}}+ Area_{\tiny {semicircle}}}[/tex]
[tex] \quad\dashrightarrow\quad \sf {A = ( l \times b ) + \dfrac{\pi r^2 }{2} }[/tex]
[tex] \quad\dashrightarrow\quad \sf {41.4 = ( l \times 4 ) +\dfrac{3.14\times 2^2}{2} }[/tex]
[tex] \quad\dashrightarrow\quad \sf { 41.4= ( l \times 4 )+ \dfrac{ 3.14\times 4}{2}}[/tex]
[tex] \quad\dashrightarrow\quad \sf { 41.4=( l \times 4 )+ \dfrac{12.56}{2}}[/tex]
[tex] \quad\dashrightarrow\quad \sf { 41.4= (l \times 4 )+ 6.28}[/tex]
[tex] \quad\dashrightarrow\quad \sf {l \times 4 = 41.4-6.28 }[/tex]
[tex] \quad\dashrightarrow\quad \sf { l\times 4 = 35.12}[/tex]
[tex] \quad\dashrightarrow\quad \sf { l =\dfrac{35.12}{4}}[/tex]
[tex] \quad\dashrightarrow\quad \underline{\underline{\pmb{\sf {l = 8.78\:cm}}} }[/tex]