log14/3 +log11/5-log22/15=log

Answer:
[tex]log7[/tex]
Step-by-step explanation:
when adding logs, apply the log rule: [tex]\log _a\left(x\right)+\log _a\left(y\right)=\log _a\left(xy\right)[/tex]
∴ [tex]\log\left(\frac{14}{3}\right)+\log\left(\frac{11}{5}\right)=\log\left(\frac{14}{3}\cdot \frac{11}{5}\right)[/tex]
when subtracting logs, apply the log rule: [tex]\log _a\left(x\right)\:-\:\log _a\left(y\right)=\log _a\left(\frac{x}{y}\right)[/tex]
[tex]\log\left(\frac{14}{3}\cdot \frac{11}{5}\right)-\log\left(\frac{22}{15}\right)=\log\left(\frac{\frac{14}{3}\cdot \frac{11}{5}}{\frac{22}{15}}\right)\\\\=\log\left(7\right)[/tex]
Answer:
log 7
Step-by-step explanation:
Adding the first values :
Applied Rule : log a + log b = log(ab)
⇒ log (14/3) + log (11/5)
⇒ log (14/3 × 11/5)
⇒ log (154/15)
Subtracting the second values :
Applied Rule : log a - log b = log(a/b)
⇒ log (154/15 ÷ 22/15)
⇒ log (154 ÷ 22)
⇒ log 7