Respuesta :

Answer:

log₇(xy/z)

Step-by-step explanation:

We know that

[tex]\log_ax = b \implies a^b = x[/tex]

we also know that:

[tex]a^b \cdot a^c = a^{b + c}[/tex]

so it follows that

[tex]\log_ax + log_ay = log_a(xy)[/tex]

from:

[tex]\frac{a^b}{a^c} = a^{b - c}[/tex]

follows that

[tex]\log_ax - log_ay = log_a(\frac{x}{y})[/tex]

so

[tex]\log_7x + \log_7y - \log_7z = \log_7(xy) - \log_7z = \log_7(\frac{xy}{z})[/tex]