the answer:
let be A(x) =2√ 3 cos(x)csc(x)+4cos(x)-3csc(x)-2 √ 3
this function can be represented as the product of the factors
proof
2√ 3 cos(x)csc(x)+4cos(x)-3csc(x)-2 √ 3 =
2√ 3 cos(x)csc(x)+4cos(x)csc(x) / csc(x) - 3csc(x)- 2 √ 3 csc(x) / csc(x)
this method doesn't change nothing inside the function A(x)
so we have
[ 2√ 3 cos(x) +4cos(x) / csc(x) - 3 - 2 √ 3 / csc(x) ] . csc(x) this is a product of two factors,
[ 2√ 3 cos(x) +4cos(x) / csc(x) - 3 - 2 √ 3 / csc(x) ] and csc(x)
for more explanation
A(x) =[ 2√ 3 cos(x) - 3 + (4cos(x) - 2 √ 3 ) / csc(x) ] . csc(x)