Please help.
The octagon in the figure is equiangular and AB ≈ AC  .
Find m<ACB
A. 135
B. 45
C. 30
D. 90
PLEASE SHOW YOUR WORK.

Please helpThe octagon in the figure is equiangular and AB AC Find mltACB A 135 B 45 C 30 D 90 PLEASE SHOW YOUR WORK class=

Respuesta :

bcalle
The sum of the measures of the interior angles of a regular octagon equal 1080. Each angle equals 1080/8 = 135
The interior angle B = 135 so it's supplement (angle ABC) = 45 degrees. Since AB = AC, triangle ABC is isosceles, therefore angle ACB also equals 45 degrees.
Letter B

Answer-

[tex]\boxed{\boxed{m\angle ACB=45^{\circ}}}[/tex]

Solution-

The octagon in the figure is equiangular, i.e the octagon is a regular octagon.

So the octagon has 8 equal sides and 8 equal interior angles.

The sum of all of the interior angles is [tex](n-2)180=6\times 180=1080^{\circ}[/tex]

Measurement of each interior angle is,

[tex]\dfrac{1080}{8}=135^{\circ}[/tex]

∠ABC is the exterior angle of the octagon.

The interior and exterior angles are complimentary, so

[tex]\Rightarrow 135^{\circ}+m\angle ABC=180^{\circ}[/tex]

[tex]\Rightarrow m\angle ABC=180^{\circ}-135^{\circ}[/tex]

[tex]\Rightarrow m\angle ABC=45^{\circ}[/tex]

As, in ΔABC AB = AC, so

[tex]\Rightarrow m\angle ABC=m\angle ACB[/tex]

[tex]\Rightarrow m\angle ABC=m\angle ACB=45^{\circ}[/tex]