Respuesta :
arc length = rθ [r = radius of the circle, θ = central angle in radians] ⇒
[tex]r= \cfrac{arc \ length}{\theta} = \cfrac{35 \pi }{ \frac{5}{6} \pi } = \cfrac{35 \pi *6}{5 \pi } =7*6=42 \ cm [/tex]
[tex]r= \cfrac{arc \ length}{\theta} = \cfrac{35 \pi }{ \frac{5}{6} \pi } = \cfrac{35 \pi *6}{5 \pi } =7*6=42 \ cm [/tex]
The radius of circle is 42cm.
what is arc length?
The length of a segment of an arc .
Given:
central angle= 5π/6
length = 35π
As, we know length of arc
l = r* [tex]\theta\\[/tex]
r= l / [tex]\theta\\[/tex]
r= 35π / 5π/6
r= 35π * 6 / 5π
r= 7*6
r= 42 cm
Learn more about this concept here:
https://brainly.com/question/13079307
#SPJ5