Find the radius of a circle on which a central angle measuring 5 over 6 pi radians intercepts an arc on the circle with a length of 35π centimeters

Respuesta :

arc length = rθ    [r = radius of the circle, θ = central angle in radians]  ⇒


[tex]r= \cfrac{arc \ length}{\theta} = \cfrac{35 \pi }{ \frac{5}{6} \pi } = \cfrac{35 \pi *6}{5 \pi } =7*6=42 \ cm [/tex]

The radius of circle is 42cm.

what is arc length?

The length of a segment of an arc .

Given:

central angle= 5π/6

length = 35π

As, we know length of arc

l = r* [tex]\theta\\[/tex]

r= l /  [tex]\theta\\[/tex]

r= 35π /  5π/6

r=  35π * 6 / 5π

r= 7*6

r= 42 cm

Learn more about this concept here:

https://brainly.com/question/13079307

#SPJ5